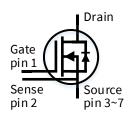


CoolSiC™ 1700V SiC Trench MOSFET Silicon Carbide MOSFET

Features


- Revolutionary semiconductor material Silicon Carbide
- Optimized for fly-back topologies
- 12V/0V gate-source voltage compatible with most fly-back controllers
- Very low switching losses
- Benchmark gate threshold voltage, V_{GS(th)} = 4.5V
- Fully controllable dV/dt for EMI optimization

Benefits

- Reduction of system complexity
- Directly drive from fly-back controller
- Efficiency improvement and cooling effort reduction
- Enabling higher frequency

Potential applications

- Energy generation
 - Solar string inverter
 - Solar Central inverter
- Industrial power supplies
 - Industrial UPS
 - Industrial SMPS
- Infrastructure Charger
 - Charger

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC 47/20/22

Note: the source and sense pins are not exchangeable, their exchange might lead to malfunction recommended for forward operation mode only

Table 1 Key Performance and Package Parameters

Туре	V _{DS}	T_D $T_C = 25^{\circ}C, R_{th(j-c,max)}$	$R_{DS(on)}$ $T_{vj} = 25^{\circ}C, I_{D} = 1A, V_{GS} = 12V$	$T_{ m vj,max}$	Marking	Package
IMBF170R1K0M1	1700V	5.2A	$1000 \text{m}\Omega$	175°C	170M11K0	PG-TO263-7

Datasheet

Please read the Important Notice and Warnings at the end of this document

CoolSiC™ 1700V SiC Trench MOSFET

Table of contents

Table of contents

Feat	tures	1
Ben	nefits	1
Pote	ential applications	1
	duct validation	
	ole of contents	
1	Maximum ratings	
2	Thermal resistances	
3	Electrical Characteristics	
3.1	Static characteristics	
3.2	Dynamic characteristics	
3.3	Switching characteristics	7
4	Electrical characteristic diagrams	8
5	Package drawing	12
6	Test conditions	
Revi	rision history	

CoolSiC[™] 1700V SiC Trench MOSFET

Maximum ratings

1 Maximum ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Table 2 Maximum ratings

Parameter	Symbol	Value	Unit
Drain-source voltage, <i>T</i> _{vj} ≥ 25°C	$V_{ m DSS}$	1700	V
DC drain current for $R_{\text{th(j-c,max)}}$, limited by T_{vjmax} , $V_{\text{GS}} = 12V$,			
$T_C = 25$ °C	I _D	5.2	Α
$T_{\rm C} = 100^{\circ}{\rm C}$		3.7	
Pulsed drain current, t_p limited by T_{vjmax} , $V_{GS} = 12V$	I _{D,pulse} ¹	13.3	А
Gate-source voltage ²			
Max transient voltage, < 1% duty cycle	V_{GS}	-1020	V
Recommended turn-on gate voltage	$V_{GS,on}$	1215	V
Recommended turn-off gate voltage	$V_{GS,off}$	0	
Power dissipation, limited by $T_{v_{jmax}}$			
$T_{\rm C} = 25^{\circ}{\rm C}$	P_{tot}	68	W
$T_{C} = 100$ °C		34	
Virtual junction temperature	$T_{\rm vj}$	-55175	°C
Storage temperature	$T_{\rm stg}$	-55150	°C
Soldering temperature		250	0.0
Reflow soldering (MSL1 according to JEDEC J-STD-020)	T_{sold}	260	°C

¹ verified by design

² **Important note:** The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design guidelines described in <u>Application Note AN2018-09</u> must be considered to ensure sound operation of the device over the planned lifetime.

CoolSiC™ 1700V SiC Trench MOSFET

Thermal resistances

2 Thermal resistances

Table 3

Davamatav	Complete	Conditions	Value			Unit
Parameter	Symbol		min.	typ.	max.	
MOSFET thermal resistance, junction – case	$R_{th(j-c)}$		-	1.7	2.2	K/W
Thermal resistance, junction – ambient	$R_{th(j-a)}$	leaded	-	-	62	K/W

CoolSiC™ 1700V SiC Trench MOSFET

Electrical Characteristics

3 Electrical Characteristics

3.1 Static characteristics

Table 4 Static characteristics (at T_{vj} = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Drain-source on-state	R _{DS(on)}	$V_{GS} = 12V, I_{D} = 1A,$				
resistance		$T_{\rm vj} = 25^{\circ} \rm C$	-	1000	-	
		T _{vj} = 100°C	-	1416	-	mΩ
		$T_{\rm vj} = 175^{\circ}{\rm C}$	-	2037	-	11122
		$V_{GS} = 15V, I_{D} = 1A,$				
		T _{vj} = 25°C	-	809	880	
Gate-source threshold voltage	$V_{GS(th)}$	(tested after 1 ms pulse at V_{GS} = 20V)				
		$I_{\rm D} = 1.1 {\rm mA}, \ V_{\rm DS} = V_{\rm GS}$				V
		T _{vj} = 25°C	3.5	4.5	5.7	
		T _{vj} =175°C	-	3.6	-	
Zero gate voltage drain	I _{DSS}	$V_{\rm GS}$ = 0V, $V_{\rm DS}$ = 1700V				
current		T _{vj} = 25°C	-	0.4	11	μΑ
		$T_{\rm vj} = 175^{\circ}{\rm C}$	-	6	-	
Gate-source leakage	I_{GSS}	$V_{GS} = 20V, V_{DS} = 0V$	-	-	100	nA
current		$V_{GS} = -10V, V_{DS} = 0V$	-	-	-100	nA
Transconductance	g_{fs}	$V_{\rm DS} = 20 \text{V}, I_{\rm D} = 1 \text{A}$	-	0.42	-	S
Internal gate resistance	$R_{G,int}$	$f = 1$ MHz, $V_{AC} = 25$ mV	-	35	-	Ω

CoolSiC™ 1700V SiC Trench MOSFET

Electrical Characteristics

3.2 Dynamic characteristics

Table 5 Dynamic characteristics (at $T_{vj} = 25^{\circ}$ C, unless otherwise specified)

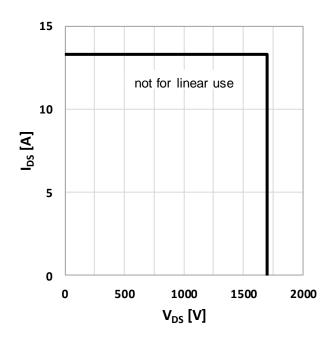
Davamatav	Symbol	Conditions	Value			Unit
Parameter		Conditions	min.	typ.	max.	Onic
Input capacitance	C _{iss}		-	275	-	
Output capacitance	Coss	$V_{DD} = 1000 \text{V}, V_{GS} = 0 \text{V},$ $f = 1 \text{MHz}, V_{AC} = 25 \text{mV}$ $V_{DD} = 1000 \text{V}, I_{D} = 1 \text{A},$ $V_{GS} = 0/12 \text{V}, \text{turn-on pulse}$	-	7.2	-	pF
Reverse capacitance	C_{rss}		-	0.7	-	
C _{oss} stored energy	Eoss		-	1.3	-	μJ
Total gate charge	Q_{G}		-	5	-	
Gate to source charge	$Q_{GS,pl}$		-	1.5	-	nC
Gate to drain charge	Q_{GD}		-	1.6	-	

CoolSiC™ 1700V SiC Trench MOSFET

Electrical Characteristics

3.3 Switching characteristics

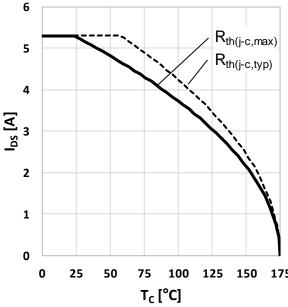
Table 6 Switching characteristics, Inductive load ³


Parameter	Symbol	Conditions	Value	Value		
			min.	typ.	max.	
MOSFET Characteristics,	<i>T</i> _{vj} = 25°C					
Turn-on delay time	t _{d(on)}	$V_{\rm DD} = 1000 \text{V}, I_{\rm D} = 1 \text{A},$	-	19	-	
Rise time	t _r	$V_{\rm GS} = 0/12 \text{V}, R_{\rm G,ext} = 22 \Omega,$ $L_{\sigma} = 40 \text{nH},$ diode: body diode at $V_{\rm GS} = 0 \text{V}$	-	14	-	
Turn-off delay time	$t_{\sf d(off)}$		-	20	-	ns
Fall time	t _f		-	22	-	
Turn-on energy	Eon		-	31	-	
Turn-off energy	$E_{ m off}$	see Fig. E	-	7	-	μJ
Total switching energy	E _{tot}		-	37	-	

MOSFET Characteristics, $T_{vj} = 175^{\circ}C$						
Turn-on delay time	$t_{\sf d(on)}$	$V_{DD} = 1000 \text{V}, I_D = 1 \text{A},$	-	16	-	
Rise time	t _r	$V_{\rm GS} = 0/12 \text{V}, R_{\rm G,ext} = 22 \Omega,$ $L_{\sigma} = 40 \text{nH},$ diode:	-	11	-	
Turn-off delay time	$t_{ m d(off)}$		-	23	-	ns
Fall time	t _f		-	23	-	
Turn-on energy	Eon	body diode at $V_{GS} = 0V$	-	33	-	
Turn-off energy	$E_{ m off}$	see Fig. E	-	8	-	μJ
Total switching energy	$E_{\rm tot}$		-	41	-	

 $^{^3}$ The chip technology was characterized up to 200 kV/ μ s. The measured dV/dt was limited by measurement test setup and package. In applications, e.g. fly-back topology, the switching behavior highly depends on the circuitry (transformer, snubber...), the switching loss in the application will be different from the datasheet value.

Electrical characteristic diagrams


Electrical characteristic diagrams 4

80 $R_{\text{th(j-c,max)}}$ 70 $R_{th(j-c,typ)}$ 60 50 40 30 20 10 0 25 50 75 100 125 150 175 0 T_C [°C]

Safe operating area (SOA) Figure 1 $(V_{GS} = 0/12V, T_c = 25^{\circ}C, T_i \le 175^{\circ}C)$

Power dissipation as a function of case Figure 2 temperature limited by bond wire $(P_{\text{tot}} = f(T_{\text{C}}))$

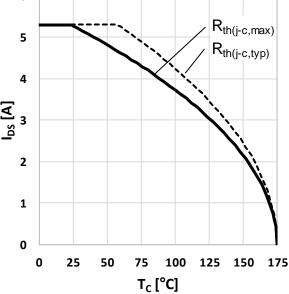


Figure 3 **Maximum DC drain to source current** as a function of case temperature limited by bond wire $(I_{DS} = f(T_C))$

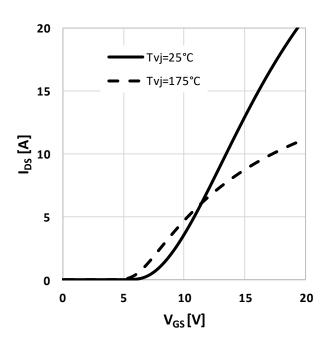
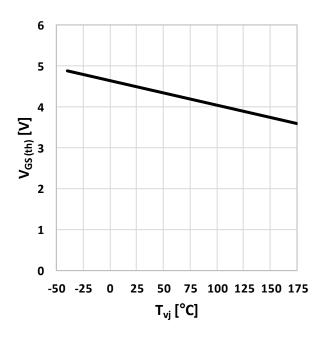



Figure 4 **Typical transfer characteristic** $(I_{DS} = f(V_{GS}), V_{DS} = 20V, t_{P} = 20\mu s)$

infineon

Electrical characteristic diagrams

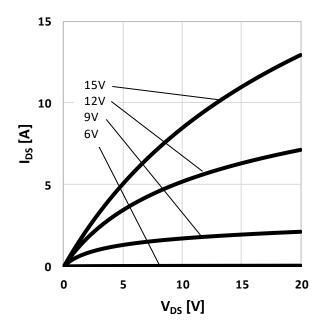

2 000 1 750 R_{DS (ON)} [mOhm] 1 500 1 250 1 000 **750** VGS = 12V 500 •••• VGS = 15V 250 0 -50 -25 25 50 75 100 125 150 175 0 T_{vj} [°C]

Figure 5 Typical gate-source threshold voltage as a function of junction temperature

 $(V_{GS(th)} = f(T_{vj}), I_{DS} = 1.1 \text{mA}, V_{GS} = V_{DS})$

Figure 6 Typical on-resistance as a function of junction temperature

$$(R_{DS(on)} = f(T_{vj}), I_{DS} = 1A)$$

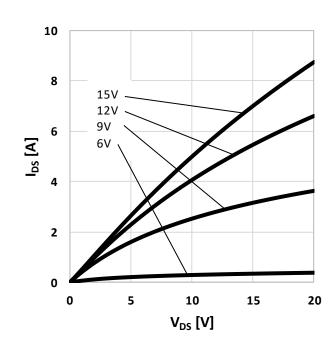


Figure 7 Typical output characteristic, V_{GS} as parameter

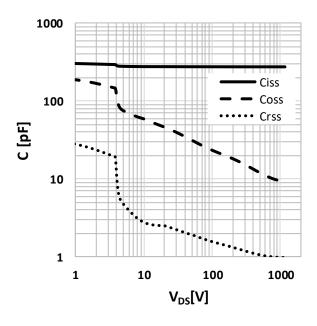
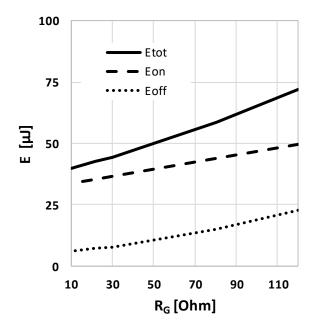

$$(I_{DS} = f(V_{DS}), T_{vj} = 25^{\circ}C, t_{P} = 20\mu s)$$

Figure 8 Typical output characteristic, V_{GS} as parameter

$$(I_{DS} = f(V_{DS}), T_{vj} = 175^{\circ}C, t_{P} = 20 \mu s)$$

infineon


Electrical characteristic diagrams

15 10 E S 5 0 0 0 2 4 6 Q_G[nC]

Figure 9 Typical capacitance as a function of drain-source voltage $(C = f(V_{DS}), V_{GS} = 0V, f = 1MHz)$

Figure 10 Typical gate charge $(V_{GS} = f(Q_G), I_{DS} = 1A, V_{DS} = 1000V, turn-on pulse)$

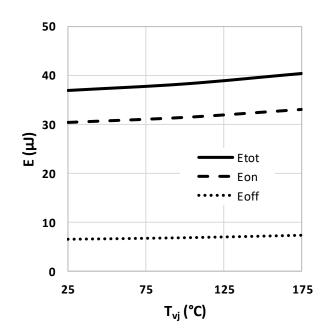


Figure 11 Typical switching energy losses as a function of gate resistance $(E = f(R_{G,ext}), V_{DD} = 1000V, V_{GS} = 0V/12V,$

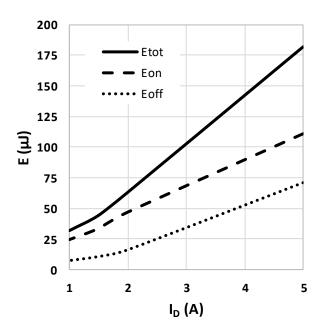

 $(E = f(R_{G,ext}), V_{DD} = 1000V, V_{GS} = 0V/12V,$ $I_D = 1A, T_{vj} = 175$ °C, ind. load, test circuit in Fig. E, diode: body diode at $V_{GS} = 0V$)

Figure 12 Typical switching energy losses as a function of junction temperature $(E = f(T_{vj}), V_{DD} = 1000V, V_{GS} = 0V/12V,$ $R_{G,ext} = 22\Omega, I_D = 1A$, ind. load, test circuit in Fig. E, diode: body diode at

 $V_{GS} = 0V$

(infineon

Electrical characteristic diagrams

To 30 50 70 90 110 R_G [Ohm]

Figure 13 Typical switching energy losses as a function of drain-source current

 $(E = f(I_{DS}), V_{DD} = 1000V, V_{GS} = 0V/12V,$ $R_{G,ext} = 22\Omega, T_{vj} = 175^{\circ}C$, ind. load, test circuit in Fig. E, diode: body diode at $V_{GS} = 0V$)

Figure 14 Typical switching times as a function of gate resistor

 $(t = f(R_{G,ext}), V_{DD} = 1000V, V_{GS} = 0V/12V,$ $I_D = 1A, T_{vj} = 175^{\circ}C$, ind. load, test circuit in Fig. E, diode: body diode at $V_{GS} = 0V$)

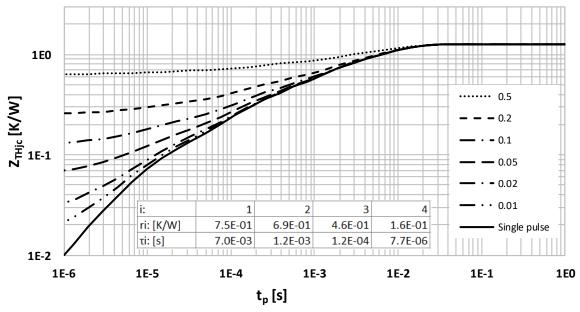


Figure 15 Max. transient thermal resistance (MOSFET)

 $(Z_{\text{th}(j-c,max)} = f(t_P)$, parameter $D = t_p/T$, thermal equivalent circuit in Fig. D)

Package drawing

5 Package drawing

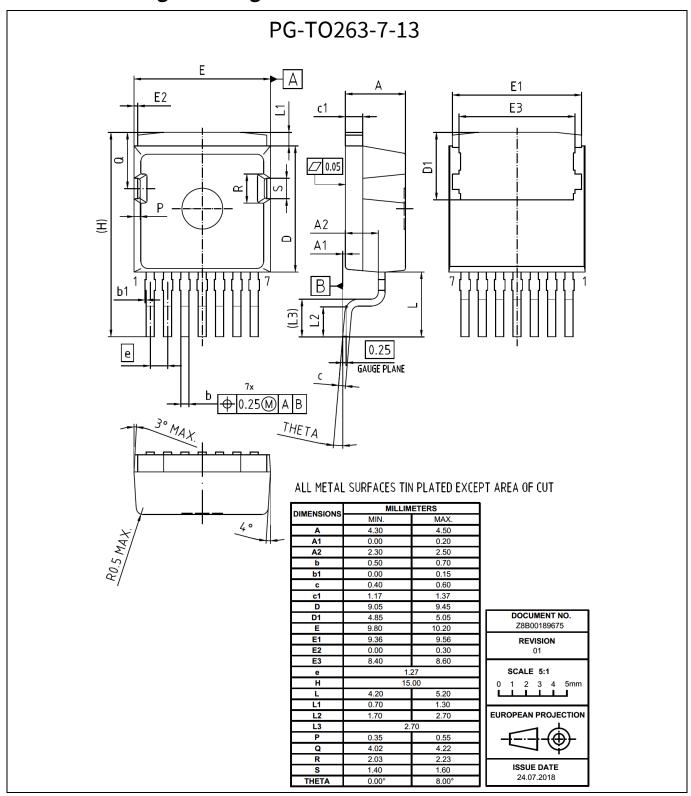


Figure 16 Package drawing

infineon

Test conditions

6 Test conditions

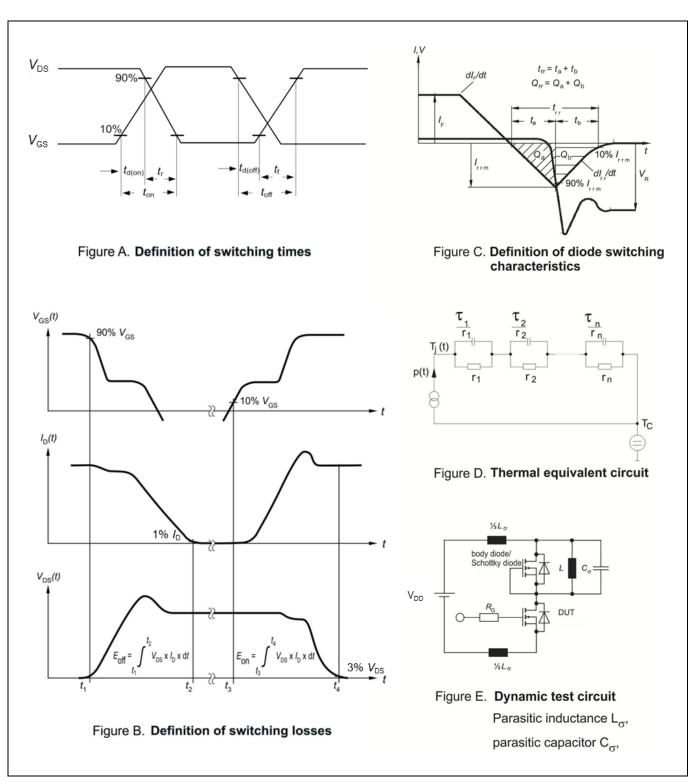


Figure 17 Test conditions

CoolSiC™ 1700V SiC Trench MOSFET

Revision history

Revision history

Document version	Date of release	Description of changes
2.1	2020-04-27	Final Datasheet

Trademarks

 $All\ referenced\ product\ or\ service\ names\ and\ trademarks\ are\ the\ property\ of\ their\ respective\ owners.$

Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2020.
All Rights Reserved.

Important notice

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is \underline{not} qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.